Sabtu, 16 Mei 2009

Teknologi Baru Pengolahan Air Membersihkan Air dengan Katalis

Ditulis oleh Redaksi chem-is-try.org pada 10-08-2000

Baru-baru ini, Tim peneliti dari Hitachi mengumumkan bahwa mereka berhasil menemukan teknologi baru dalam pengolahan air. Mereka telah berhasil mengembangkan
teknologi katalis untuk menguraikan zat organik yang terkandung dalam air. Katalis yang digunakan adalah katalis yang aktif setelah dikenai sinar ultraviolet. Dikatakan bahwa lebih dari 90 persen zat organik termasuk Dioksin bisa diuraikan dengan cara ini.

Kelebihan teknologi ini dibandingkan dengan teknologi yang ada selama ini adalah cukup menggunakan katalis tanpa menggunakan zat tambahan. Beaya proses ini jauh
lebih murah dibandingkan dengan teknologi yang ada saat ini, misalnya dibandingkan dengan menggunakan membran. Di samping itu, proses penguraian zat organik dengan teknologi ini memerlukan waktu yang relatif singkat.

Kelemahan dari teknologi ini adalah ambang konsentrasi polutan yang masih relatif kecil, dibawah 100 ppm. Sehingga, untuk air limbah yang memiliki tingkat konsentrasi zat organik sangat tinggi diperlukan proses pendahuluan untuk menurunkan kandungan zat organiknya.

Katalis adalah zat yang bisa mempercepat atau memacu terjadinya suatu reaksi. Dalam hal ini adalah reaksi penguraian zat organik. Untuk proses pengolahan air ini, katalis yang dipakai adalah Titan Oksida. Titan Oksida menjadi oksidator kuat setelah disinari sinar ultraviolet. Titan Oksida yang telah aktif tersebut akan mengoksidasi zat-zat organik ada.

Alat pembersih air yang dirancang oleh Hitachi memiliki bentuk yang sederhana. Yaitu berupa reaktor berbentuk silinder dengan sumber sinar ultraviolet pada bagian tengahnya. Sedangkan katalis ditempelkan pada dinding dalam silinder dengan zat perekat. Air limbah cukup dilewatkan pada reaktor silinder tersebut dan zat organik yang terkandung di dalamnya akan diuraikan oleh katalis yang di dinding silinder.

Saat ini, Indonesia sedang menghadapi masalah serius tentang air bersih. Kelihatannya kita bisa menaruh harapan pada pengembangan teknologi ini.

Sumber : Berita Iptek

Silanetion tidak tersubstitusi yang pertama berhasil diidentifikasi

Senyawa-senyawa yang berikatan rangkap silikon-sulfur (silanetion) merupakan golongan senyawa yang menarik. Senyawa ini dianggap terdapat di angkasa luar. Beberapa silanetion tersubstitusi, RR’Si=S, yang distabilkan oleh gugus alkil (R) sebelumnya telah disintesis dan strukturnya ditentukan dengan menggunakan kristalografi sinar-X. Tetapi silanetion yang tidak tersubstitusi (H2Si=S) − analog golongan kedua dari formaldehida − belum pernah ditemukan sebelumnya. Peneliti di Jerman untuk pertama kalinya telah mengidentifikasi silanetion tidak-tersubstitusi ini.

Sebuah tim yang dipimpin oleh Sven Thorwirth di Max Planck Institute for Radioastronomy, Bonn, mampu mengkarakterisasi molekul yang sulit dipahami ini dengan menggunakan spektroskopi mikrowave. "Di alam semesta, silikon dan sulfur merupakan unsur yang sangat melimpah," kata Thorwirth. Silanetion tidak tersubstitusi ini merupakan "sebuah molekul luar angkasa yang tidak diragukan keberadaannya" yang bisa terdapat dalam kulit debu yang mengelilingi bintang-bintang sekarat (dying stars), paparnya.

Thorwirth menggunakan spektroskopi mikrowave − yang mengukur perbedaan antara radiasi elektromagnetik yang diserap oleh sebuah molekul dan yang diemisikan − untuk mencari molekul tersebut. Perbedaan radiasi terkait dengan rotasi molekul ini, dan digunakan untuk mengidentifikasi spesies-spesies molekuler dan isotop-isotop. Tim ini kemudian mengolah hasil eksperimental mereka dengan perhitungan-perhitungan kimia kuantum tingkat tinggi. Dengan menjelaskan signifikansi penelitian ini, Thorwirth mengatakan bahwa "data ini menjadi basis laboratorium yang diperlukan untuk pencarian-pencarian radio-astronomi di masa mendatang untuk molekul ini di angkasa."

Penelitian ini disambut baik oleh Paul Davies, seorang anggota dari kelompok spektroskopi laser infra-merah di Universitas Cambridge, Inggris, yang mengatakan bahwa kombinasi antara spektroskopi dan perhitungan tingkat tinggi ini "seharusnya dapat diterapkan untuk mengungkap spektra dari molekul-molekul yang sangat rumit, sehingga memungkinkan realisasi potensi penuh dari spektroskopi mikrowave.

Disadur dari: http://www.rsc.org/chemistryworld/

Dekomposisi Hidrogen dari Air Dengan Natrium

Ditulis oleh Donny Jaya

enawarkan keuntungan sebagai sumber energi yang ramah lingkungan dan tanpa polusi. Hidrogen paling banyak diproduksi dari gas alam (48%), dan merupakan elemen paling ringan di dunia (berat atom = 1 g/mol), sehingga kemampuan difusinya sangat tinggi. Bisa juga digunakan sebagai bahan bakar reaktor fusi (masih tahap pengembangan), dan sebagai sumber bahan baku pembuatan HidroCarbon (BBM Sintetis). Salah satu kendala untuk produksi hidrogen adalah sumber gas alam sendiri adalah sumber energi yang tak dapat diperbaharui, cadangannya pun semakin menipis, dan harganya terus naik, apakah ada cara lain untuk mendapatkan hidrogen? Bagaimana mendapatkannya? Banyak caranya, diantaranya dengan elektrolisis air, namun kendalanya adalah biaya yang sangat mahal. Apakah ada cara lainnya… Ada, yaitu dengan Natrium/Sodium.

Natrium banyak tersedia dan melimpah jumlahnya di lautan Bumi sebagai NaCl (garam), Natrium adalah elemen yang sangat reaktif, biaya produksi natrium pada tahun 1997 adalah US$ 0.30/kg - US$0.45/kg, cukup murah. Pada kondisi standar, logam natrium jika direaksikan dengan air akan menghasilkan gas hidrogen dengan reaksi sebagai berikut:

2Na + 2H2O → 2NaOH + H2 …………………………..(1) Eksotermal

2H2 + O2 → 2H2O ……………………………….(2) Autoignition

Reaksi tersebut bersifat eksotermal yang menghasilkan panas, sehingga gas hidrogen secara otomatis terbakar, ini disebabkan karena gas hidrogen mengalami proses autoignition akibat perpindahan panas dari reaksi ke lingkungan. Yang menjadi pertanyaan adalah, apakah mungkin gas hidrogen dari reaksi ini dipanen? Jawabnya mungkin…

Gas Hidrogen memiliki Flammability Limit dengan kisaran volume 4 - 75 % di udara, dan memiliki Autoignition Point pada suhu 585 0C, reaksi pembakaran selalu membutuhkan oksigen, begitu juga dengan Hidrogen, dengan reaksi sebagai berikut:

2H2 + O2 → 2H2O ……………………………….(3)

Proses Autoignition Hidrogen pada reaksi Natrium dengan Air dapat dicegah dengan cara menyingkirkan oksigen pada sistem tertutup sehingga Flammability Limit dan Autoignition tidak berlaku, bagaimana caranya? Dengan metode hampa dan gas inert (Nitrogen).

Nitrogen memiliki titik didih pada -195.79 0C, pada kondisi cair nitrogen memilki suhu dibawah - 195.79 0C. Pelepasan gas nitrogen secara cepat kedalam sistem tertutup dapat menggantikan posisi oksigen. Pada kondisi standar, suhu kamar 25 0C, Nitrogen cair akan mendidih dengan sangat cepat, tuangkan nitrogen cair (suhu < - 196 0C) dari tabungnya kedalam wadah logam (yang bersuhu + 25 0C), maka nitrogen cair akan mendidih dengan sangat cepat namun tidak lama, bisa ditambahkan air agar lebih lama mendidihnya, gas inilah yang akan dimanfaatkan untuk menyingkirkan oksigen.

Pada saat kondisi sistem (tertutup) telah dihampakan (vacum), segera isi dengan gas nitrogen, kemudian reaksikan natrium dengan air, akan menghasilkan gas hidrogen dan natrium hidroksida (produk samping), karena berada pada kondisi inert, reaksi autoignition hidrogen bisa dicegah, sekalipun efek eksotermall terus terjadi. Karena berat atom hidrogen = 1, maka hidrogen akan selalu mengisi ruang yang paling atas, difusifitasnya pun sangat cepat, tidak lupa juga hidrogen harus melewati kondensor agar suhunya turun (akibat proses eksotermal), setelah dingin bisa dikumpulkan dan dikompresi lalu hidrogen siap dipanen, sehingga proses ini memungkinkan untuk dilakukan.

Bisa juga untuk menurunkan efek eksotermalnya, sebelum direaksikan natrium dicelupkan dulu ke nitrogen cair ( < - 195.79 0C), baru kemudian direaksikan dengan air, diharapkan efek eksotermalnya sedikit berkurang karena suhu natrium yang berada pada kisaran - 195 0C.

Selain itu produk sampingnya yang berupa NaOH memiliki nilai jual juga, sehingga proses ini sangat menguntungkan.

Menangkap karbon dioksida dengan batuan

Ditulis oleh Soetrisno pada

Penelitian tentang sebuah jenis batuan yang banyak ditemukan di Oman menunjukkan bahwa batuan tersebut bisa digunakan untuk menyapu bersih milyaran ton karbon dioksida setiap tahun tanpa harus ditambang, menurut beberapa ilmuwan di Amerika Serikat .

Peter Keleman dan Jurg Matter, di Columbia University, US, mengatakan bahwa batuan peridotit (yang sebagian besar tersusun atas mineral silikat olivin dan piroksen) bereaksi secara alami dengan CO2 dan membebaskannya dalam bentuk karbonat jauh lebih cepat dari yang diduga, berdasarkan kajian penarikhan (dating studies) 14C. Dengan mempercepat reaksi ini dengan panas dan dengan memaksa CO2 masuk ke dalam batuan melalui lubang-lubang yang telah dibor, para peneliti ini memperkirakan bahwa batuan perodotit Oman sendiri bisa menangkap milyaran ton CO2 dalam waktu setahun − sebuah proporsi signifikan dari 30 milyar ton CO2 yang diemisikan setiap tahun di dunia oleh aktivitas manusia. Periodotit juga ditemukan di pulau-pulau Pasifik Papua Nugini dan Caledonia, serta di California.

Batuan peridotit di Oman bisa menangkap lebih dari satu milyar ton karbon dioksida setahun

Ide penangkapan CO2 dalam bentuk karbonat di dalam batuan bukanlah hal yang baru sama sekali. Tetapi penangkapan CO2 secara alami tidak berlangsung sangat cepat, dan kebanyakan skema yang ada memerlukan energi untuk menambang batuan dan menyebarkannya pada sebuah permukaan, atau membawanya ke sebuah pabrik pembangkit daya. Kelemen dan Matter menunjukkan bahwa dengan sedikit panas ekstra dan beberapa persiapan, batuan peridotit bisa dibiarkan tetap pada tempatnya semula dan CO2 diarahkan ke batuan tersebut.

Salah satu pendekatan yang digunakan adalah pemanasan pendahuluan peridotit dan menginjeksikan CO2 murni atau campuran cairan yang kaya CO2. Karena reaksi antara silikat dan CO2 untuk membentuk karbonat bersifat eksotermis, maka reaksi ini akan menjaga suhu batuan mendekati suhu optimum 200°C, sehingga memaksimalkan laju reaksi. Tetapi CO2 harus dipompakan dengan cepat ke dalam batuan agar dapat mengimbangi laju reaksi yang meningkat. Ini bisa menimbulkan masalah, karena pemurnian CO2 dari gas cerobong pabrik sangat intensif energi, papar Mercedes Maroto-Valer, yang meneliti sekuestrasi karbon di Nottingham University’s center untuk penangkapan dan penyimpanan karbon.

Pendekatan kedua menghindari isu ini dengan menggunakan teknik-teknik dari industri minyak untuk mengebor dua lubang jauh ke dalam formasi batuan di bawah perairan laut dangkal, dan menyambung kedua lubang ini dengan sebuah jalur. Suhu batuan meningkat seiring dengan kedalaman dan suhu pada dasar lubang bor 5km adalah sekitar 100°C. Air laut yang dingin, yang mengandung CO2 bisa dipompakan kedalam salah satu lubang, dan jika telah mencapai dasar lubang, reaksi eksotermis selanjutnya akan mempertahankan suhu tinggi yang diperlukan untuk mengarahkan proses ini. Air yang menjadi panas pada akhirnya akan mencari jalan untuk berpindah ke lubang bor kedua (melalui jalur sambungan yang telah dibuat) dan naik ke permukaan melalui proses konveksi.

Meskipun pendekatan ini akan dibatasi oleh suplai CO2 terlarut dengan jumlah sekitar 10.000 ton CO2 per km3 batuan, namun biayanya bisa jauh lebih rendah, karena air yang bersirkulasi akan berfungsi mentransport CO2.

Para peneliti ini sangat berhati-hati dengan usulan tersebut. Model-model yang lebih rinci dan tes lapangan akan diperlukan untuk mengevaluasinya, kata mereka.

Disadur dari: http://www.rsc.org/chemistryworld/

Unsur-unsur toksik dalam asap rokok

Kata Kunci: , , ,
Ditulis oleh Soetrisno

Logam-logam berat seperti arsenik, kadmium, dan timbal telah dideteksi dalam asap rokok,dengan menunjukkan bahwa unsur-unsur toksik ini bisa merambat sampai jarak berbeda-beda alam aliran udara.

Rokok yang sedang terbakar menghasilkan lebih dari 4000 zat kimia; banyak diantaranya yang bersifat toksik dan sekitar 40 menyebabkan kanker. Senyawa-senyawa ini tetap berada di udara sebagai asap tembakau lingkungan yang dihirup oleh orang lain di kawasan tersebut. Ada dua tipe asap rokok, yaitu: asap rokok utama yang keluar dari mulut perokok dan asap sampingan yang berasal dari ujung rokok yang terbakar.

Ketika meneliti logam-logam berat dalam asap rokok sampingan, para peneliti di perusahaan rokok Philip Morris, US, menemukan tumpukan arsenik dalam cerobong asap yang digunakan dalam tahap pertama pada peralatan mereka. Fenomena ini tidak ditemukan untuk kadmium atau timbal. Mereka menganggap bahwa yang menyebabkan ini terjadi adalah bahwa arsenik bisa menjadi uap cair sedangkan kadmium dan timbal adalah partikulat padat.

Michael Chang dan rekan-rekannya menggunakan sebuah alat yang disebut cerobong "ekor ikan" untuk menyalurkan asap dari sebatang rokok yang sedang terbakar menuju ke sebuah jet impactor yang mengumpulkan asap sebagai kondensat. Asap yang tersisa dilewatkan melalui sebuah saringan ester selulosa campuran untuk mencoba menangkap asap yang tersisa. Beberapa cara dicoba untuk mempersiapkan asap yang telah berkondensasi pada bagian-bagian yang berbeda dari alat. Metode yang terbaik adalah pengambilan sampel adukan, yang melibatkan penggunaan deterjen Triton X-100 dan asam nitrat untuk membuat adukan dengan kondensat asap. Spektroskopi massa berpasangan induktif digunakan untuk menganalisis adukan.

Deposisi persentase total arsenik yang lebih besar (20 persen), dibanding kadmium atau timbal (kurang dari 5 persen) dalam cerobong tersebut menunjukkan bahwa unsur-unsur toksik dalam asap rokok bisa merambat secara berbeda dalam aliran udara dan bisa terdeposisi pada titik-titik berbeda. Para peneliti ini menduga perilaku ini disebabkan oleh perbedaan antara unsur fase padat (partikulat) dan cair (uap).

Disadur dari: http://www.rsc.org/chemistryworld/

Pembuangan dan Penanganan Bahan Kimia Tumpahan di Laboratorium

Ditulis oleh Yoky Edy Saputra

Laboratorium yang baik adalah laboratorium yang tidak hanya memperhatikan masalah ketelitian analisa saja. Akan tetapi laboratorium yang baik juga harus memperhatikan masalah pembuangan limbah. Limbah yang dibuang sembarangan, jika masuk ke badan air tanah dan mengalir ke pemukiman penduduk akan menimbulkan bahaya. Terutama logam-logam berat. Jika tidak ditangani dengan baik dapat membahayakan makhluk hidup dan merusak lingkungan.

Pembuangan Limbah

Secara umum, metoda pembuangan limbah laboratorium terbagi atas empat metoda.

Pertama, pembuangan langsung dari laboratorium. Metoda pembuangan langsung ini dapat diterapkan untuk bahan-bahan kimia yang dapat larut dalam air. Bahan-bahan kimia yang dapat larut dala air dibuang langsung melalui bak pembuangan limbah laboratorium. Untuk bahan kimia sisa yang mengandung asam atau basa harus dilakukan penetralan, selanjutnya baru bisa dibuang. Untuk bahan kimia sisa yang mengandung logam-logam berat dan beracun seperti Pb, Hg, Cd, dan sebagainya, endapannya harus dipisahkan terlebih dahulu. Kemudian cairannya dinetralkan dan dibuang.

Kedua, dengan pembakaran terbuka. Metoda pembakaran terbuka dapat dterapkan untuk bahan-bahan organik yang kadar racunnya rendah dan tidak terlalu berbahaya. Bahan-bahan organik tersebut dibakar ditempat yang aman dan jauh dari pemukiman penduduk.

Ketiga, pembakaran dalan insenerator. Metoda pembakaran dalam insenerator dapat diterapkan untuk bahan-bahan toksik yang jika dibakar ditempat terbuka akan menghasilkan senyawa-senyawa yang bersifat toksik.

Keempat, dikubur didalam tanah dengan perlindungan tertentu agar tidak merembes ke badan air. Metoda ini dapat diterapkan untuk zat-zat padat yang reaktif dan beracun.

Penanganan dan Pemusnahan Bahan Kimia Tumpahan

Disamping metoda-metoda yang telah disebutkan diatas, terdapat beberapa jenis tumpahan bahan kimia sisa yang perlu mendapatkan perlakuan khusus sebelum dibuang keperairan. Bahkan diantaranya perlu dimusnahkan sebelum dibuang. Diantara bahan-bahan kimia tersebut antara lain ;

1. Tumpahan Asam-asam Anorganik

Tumpahan asam-asam anorganik seperti HCl, HF, HNO3, H3PO4, H2SO4 haruslah diperlakukan dengan penanganan khusus. Bahan tumpahan tersebut permukaannya ditutup dengan NaHCO3atau campuran NaOH dan Ca(OH)2 dengan perbandingan1:1. Selanjutnya diencerkan dengan air supaya brbentuk bubur dan selanjutnya dibuang kebak pembuangan air limbah.

Basa Akali dan Amonia

Tumpahan basa-basa alkali dan ammonia seperti amonia anhidrat, Ca(OH)2, dan NaOH dapat ditangani dengan mengencerkannya dengan air dan dinetralkan dengan HCl 6 M. Kemudian diserap dengan kain dan dibuang.

3. Bahan-Bahan Kimia Oksidator

Tumpahan bahan-bahan kimia oksidator (padat maupun cair) seperti amonium dikromat, amonium perklorat, asam perklorat, dan sejenisnya dicampur dengan reduktor (seperti garam hypo, bisulfit, ferro sulfat) dan ditambahkan sedikit asam sulfat 3 M. selanjutnya campuran tersebut dinetralkan dan dibuang.

4. Bahan-Bahan Kimia Reduktor

Tumpahan bahan-bahan kimia reduktor ditutup atau dicampurkan dengan NaHCO3 (reaksi selesai) dan dipindahkan ke suatu wadah.. Selanjutnya kedalam campuran tersebut ditambahkan Ca(OCl)2 secara perlahan-lahan dan air (biarkan reaksi selesai). Setelah reaksi selesai cmpuran diencerkan dan dinetralkan sebelum dibuang ke perairan.

Untuk pemusnahan bahan reduktor (seperti Natrium bisulfit, NaNO2, SO, Na2SO2) dapat dipisahkan antara bentuk gas dan padat. Untuk gas (SO2), alirkan kedalam larutan NaOH atau larutan kalsium hipoklorit. Untu k padatan, campurkan dengan NaOH (1:1) dan ditambahkan air hingga terbentuk slurry. Slurry yang terbentuk ditambahkan kalsium hipoklorit dan air dan dibiarkan selama 2 jam. Selanjutnya dinetralkan dan dibuang ke perairan.

Sianida dan Nitril

Tumpahan sianida ditangani dengan menyerap tumpahan tersebut dengan kertas/tissu dan diuapkan dalam lemari asam, dibakar, atau dipindahkan kedalam wadah dan dibasakan dengan NaOH dan diaduk hingga terbentuk slurry. Kemudian ditambahkan ferro sulfat berlebih dan dibiarkan lebh kurang 1 jam dan dibuang keperairan.

Pemusnahan sianda dapat dilakukan dengan cara menambahkan kedalamnya larutan asa dan kalsium hipoklorit berlebih dan dibiarkan 24 jam. Selanjutnya dibuang ke perairan.

Untuk tumpahan nitril, ditambahkan NaOH berlebih dan Ca(OCl)2. setelah satu jam dibuang keperairan. Cuci bekas wadah dengan larutan hipoklorit.

Pemusnahan nitril dilakukan dengan menambahkan kadalamnya NaOH dan alkohol. Setelah 1 jam uapkan alkohol dan ditambahkan larutan basa kalsium hipoklorit. Setelah 24 jam dapat dibuang ke perairan.

Demikianlah beberapa metoda dalam penanganan dan pemusnahan tumpahan bahan-bahan kimia sisa yang terdapat dilaboratorium sebelum dibuang diperairan. Semoga bermanfaat.

Pencemaran Limbah di Sungai Siak Meluas

Pekanbaru, Kompas - Pencemaran limbah di Sungai Siak yang membunuh berbagai jenis dan ukuran ikan meluas hingga meliputi rentang panjang aliran 100 kilometer dari hulu ke hilir sungai tersebut. Akibatnya, diperhitungkan ikan yang terbunuh mencapai 1,5 ton.

Direktur Rona Lingkungan dari Universitas Riau Tengku Ariful Amri mengungkapkan itu saat ditemui di Pekanbaru, Kamis (10/6). Ia mengatakan, limbah yang mencemari air Sungai Siak dan membunuh berbagai jenis dan ukuran ikan Selasa lalu dilaporkan meluas hingga kawasan hilir yang terpisah sekitar 100 kilometer dari hulu sungai berkedalaman rata-rata 29 meter itu. Perluasan tersebut diketahui setelah mendapat laporan masyarakat yang menemukan ikan yang mati akibat kekurangan oksigen di Perawang, Kabupaten Siak.

Menurut Ariful, akibat luapan limbah tersebut, hingga Selasa lalu ikan yang mati akibat kekurangan oksigen mencapai 1,2 ton. Jumlah tersebut akan bertambah 0,3 ton sampai kondisi air Sungai Siak normal.

"Kematian ikan itu akan terus berlangsung hingga kadar oksigen terlarut dalam air Sungai Siak normal, dan hingga saat itu total ikan yang mati menjadi 1,5 ton," kata Ariful.

Menurut Ariful, kondisi air saat puncak pencemaran Selasa lalu menunjukkan tingkat oksigen terlarut (dissolved oxygen/DO) sangat rendah, yakni 0,2 hingga 0,7 bagian per milimeter (ppm). Padahal, kondisi normal yang diperlukan ikan yang hidup di Sungai Siak antara 2 hingga 3 ppm.

"Pada tanggal 2 Juni lalu, saat kami mengambil contoh air dari Sungai Siak, diketahui kondisi DO di sungai ini masih baik, 2 hingga 3 ppm. Namun, hanya dalam waktu singkat, kandungan oksigen turun drastis. Hal itu hanya dapat terjadi akibat kandungan pupuk organik yang sangat tinggi. Hal tersebut terjadi karena di bagian hulu banyak pabrik pengolahan minyak kelapa sawit dan perkebunannya," kata Ariful.

Faktor musim

Meskipun demikian, menurut Ariful, faktor utama yang menyebabkan pencemaran Sungai Siak hingga kematian ribuan ikan itu adalah pergantian musim, dari musim hujan ke musim kemarau. Musim kemarau menyebabkan volume air di sungai tersebut jauh berkurang, sementara limpahan limbahnya justru meningkat.

"Akibatnya, banyak ikan kekurangan oksigen dalam jumlah besar, sementara air yang digunakan untuk hidup berkurang. Apalagi limbah yang masuk ke aliran Sungai Siak meningkat, ketika air hujan yang terjadi sejak Senin pagi hingga Selasa malam mengalirkan limbah organik dari darat langsung ke Sungai Siak," kata Ariful.

Menurut Ariful, akibat faktor alam tersebut, kematian ikan karena kekurangan oksigen akan kembali terulang di sepanjang tahun ini. Akan tetapi, limpahan limbah tidak separah pencemaran yang membunuh ribuan ikan awal minggu ini.

"Pencemaran Sungai Siak yang berujung pada kematian ikan Selasa lalu itu yang paling parah selama ini. Ini akan kembali terulang sepanjang tahun ini meskipun tidak sama parahnya," kata Ariful.

Sebelumnya diberitakan, ribuan ikan dalam berbagai ukuran dan jenis ditemukan mati mengambang di sepanjang aliran Sungai Siak di kawasan Kota Pekanbaru. Itu dikarenakan kekurangan oksigen setelah permukaan air sungai itu tertutup limbah.

Penanggulangan terhadap Terjadinya Pencemaran Air dan Pengolahan Limbah

Kata Kunci: ,
Ditulis oleh Achmad Lutfi pada 12-03-2009

Penanggulangan terjadinya pencemaran air

Untuk mencegah agar tidak terjadi pencemaran air, dalam aktivitas kita dalam memenuhi kebutuhan hidup hendaknya tidak menambah terjadinya bahan pencemar antara lain tidak membuang sampah rumah tangga, sampah rumah sakit, sampah/limbah industri secara sembarangan, tidak membuang ke dalam air sungai, danau ataupun ke dalam selokan. Tidak menggunakan pupuk dan pestisida secara berlebihan, karena sisa pupuk dan pestisida akan mencemari air di lingkungan tanah pertanian. Tidak menggunakan deterjen fosfat, karena senyawa fosfat merupakan makanan bagi tanaman air seperti enceng gondok yang dapat menyebabkan terjadinya pencemaran air.

Pencemaran air yang telah terjadi secara alami misalnya adanya jumlah logam-logam berat yang masuk dan menumpuk dalam tubuh manusia, logam berat ini dapat meracuni organ tubuh melalui pencernaan karena tubuh memakan tumbuh-tumbuhan yang mengandung logam berat meskipun diperlukan dalam jumlah kecil. Penumpukan logam-logam berat ini terjadi dalam tumbuh-tumbuhan karena terkontaminasi oleh limbah industri. Untuk menanggulangi agar tidak terjadi penumpukan logam-logam berat, maka limbah industri hendaknya dilakukan pengolahan sebelum dibuang ke lingkungan.

Proses pencegahan terjadinya pencemaran lebih baik daripada proses penanggulangan terhadap pencemaran yang telah terjadi.

Pengolahan limbah

Limbah industri sebelum dibuang ke tempat pembuangan, dialirkan ke sungai atau selokan hendaknya dikumpulkan di suatu tempat yang disediakan, kemudian diolah, agar bila terpaksa harus dibuang ke sungai tidak menyebabkan terjadinya pencemaran air. Bahkan kalau dapat setelah diolah tidak dibuang ke sungai melainkan dapat digunakan lagi untuk keperluan industri sendiri.

Sampah padat dari rumah tangga berupa plastik atau serat sintetis yang tidak dapat diuraikan oleh mikroorganisme dipisahkan, kemudian diolah menjadi bahan lain yang berguna, misalnya dapat diolah menjadi keset. Sampah organik yang dapat diuraikan oleh mikroorganisme dikubur dalam lubang tanah, kemudian kalau sudah membusuk dapat digunakan sebagai pupuk.

Terjadinya Pencemaran Udara dan Penanggulangannya

Ditulis oleh Achmad Lutfi pada 12-03-2009

Terjadinya pencemaran udara

Kelembaban udara bergantung pada konsentrasi uap air, dan H2O yang berbeda-beda konsentrasinya di setiap daerah. Kondisi udara di dalam atmosfer tidak pernah ditemukan dalam keadaan bersih, melainkan sudah tercampur dengan gas-gas lain dan partikulat-partikulat yang tidak kita perlukan. Gas-gas dan partikulat-partikulat yang berasal dari aktivitas alam dan juga yang dihasilkan dari aktivitas manusia ini terus-menerus masuk ke dalam udara dan mengotori/mencemari udara di lapisan atmosfer khususnya lapisan troposfer. Apabila bahan pencemar tersebut dari hasil pengukuran dengan parameter yang telah ditentukan oleh WHO konsentrasi bahan pencemarnya melewati ambang batas (konsentrasi yang masih bisa diatasi), maka udara dinyatakan dalam keadaan tercemar. Pencemaran udara terjadi apabila mengandung satu macam atau lebih bahan pencemar diperoleh dari hasil proses kimiawi seperti gas-gas CO, CO2, SO2, SO3, gas dengan konsentrasi tinggi atau kondisi fisik seperti suhu yang sangat tinggi bagi ukuran manusia, hewan dan tumbuh-tumbuhan. Adanya gas-gas tersebut dan partikulat-partikulat dengan konsentrasi melewati ambang batas, maka udara di daerah tersebut dinyatakan sudah tercemar. Dengan menggunakan parameter konsentrasi zat pencemar dan waktu lamanya kontak antara bahan pencemar atau polutan dengan lingkungan (udara), WHO menetapkan empat tingkatan pencemaran sebagai berikut:

  • Pencemaran tingkat pertama; yaitu pencemaran yang tidak menimbulkan kerugian bagi manusia.
  • Pencemaran tingkat kedua; yaitu pencemaran yang mulai menimbulkan kerugian bagi manusia seperti terjadinya iritasi pada indra kita.
  • Pencemaran tingkat ketiga; yaitu pencemaran yang sudah dapat bereaksi pada faal tubuh dan menyebabkan terjadinya penyakit yang kronis.
  • Pencemaran tingkat keempat; yaitu pencemaran yang telah menimbulkan sakit akut dan kematian bagi manusia maupun hewan dan tumbuh-tumbuhan.

gambar3Gambar 3 Kebakaran menimbulkan asap yang dapat membuat pencemaran udara

Pencemaran Udara Yang Terjadi Di Indonesia

Indonesia merupakan negara di dunia yang paling banyak memiliki gunung berapi (sekitar 137 buah dan 30% masih dinyatakan aktif). Oleh sebab itu Indonesia mudah mengalami pencemaran secara alami. Selain itu adanya kebakaran hutan akibat musim kemarau panjang ataupun pembakaran hutan yang disengaja untuk memenuhi kebutuhan seperti terjadi di Kalimantan dan di Sumatera dalam tahun 1997 dan tahun 1998 menyebabkan terjadinya pencemaran yang cukup menghawatirkan, karena asap tebal hasil kebakaran tersebut menyeberang ke negara tetangga seperti Singapura dan Malaysia. Asap tebal dari hasil kebakaran hutan ini sangat merugikan, baik dalam segi ekonomi, transportasi (udara, darat dan laut) dan kesehatan. Akibat asap tebal tersebut menyebabkan terhentinya alat-alat transportasi karena dikhawatirkan akan terjadi tabrakan. Selain itu asap itu merugikan kesehatan yaitu menyebabkan sakit mata, radang tenggorokan, radang paru-paru dan sakit kulit. Pencemaran udara lainnya berasal dari limbah berupa asap yang dihasilkan dari pembakaran bahan bakar kedaraan bermotor dan limbah asap dari industri.

gambar4Gambar 4 Asap kendaraan bermotor alah satu sumber pencemaran udara

Cara penanggulangannya

Untuk dapat menanggulangi terjadinya pencemaran udara dapat dilakukan beberapa usaha antara lain: mengganti bahan bakar kendaraan bermotor dengan bahan bakar yang tidak menghasilkan gas karbon monoksida dan diusahakan pula agar pembakaran yang terjadi berlangsung secara sempurna, selain itu pengolahan/daur ulang atau penyaringan limbah asap industri, penghijauan untuk melangsungkan proses fotosintesis (taman bertindak sebagai paru-paru kota), dan tidak melakukan pembakaran hutan secara sembarangan, serta melakukan reboisasi/penanaman kembali pohon­pohon pengganti yang penting adalah untuk membuka lahan tidak dilakukan pembakaran hutan, melainkan dengan cara mekanik.

Dampak negatif dan dampak positif

Di atas telah Anda pelajari bahwa pencemaran udara dapat memberikan dampak negatif bagi makhluk hidup, manusia, hewan dan tumbuh-tumbuhan. Kebakaran hutan dan gunung api yang meletus menyebabkan banyak hewan yang kehilangan tempat berlindung, banyak hewan dan tumbuhan mati bahkan punah. Gas-gas oksida belerang (SO2 dan SO3) bereaksi dengan uap air, dan air hujan dapat menyebabkan terjadinya hujan asam yang dapat merusak gedung-gedung, jembatan, patung-patung sehingga mengakibatkan tumbuhan mati atau tidak bisa tumbuh. Gas karbon monoksida bila terhisap masuk ke dalam paru-paru bereaksi dengan haemoglobin menyebabkan terjadinya keracunan darah dan masih banyak lagi dampak negatif yang disebabkan oleh pencemaran udara.

Pencemaran udara selain memberikan dampak negatif, juga dapat memberikan dampak positif antara lain, lahar dan partikulat-partikulat yang disemburkan gunung berapi yang meletus, bila sudah dingin menyebabkan tanah menjadi subur, pasir dan batuan yang dikeluarkan gunung berapi yang meletus dapat dimanfaatkan sebagai bahan bangunan. Gas karbon monoksida bila bereaksi dengan oksigen di udara menghasilkan gas karbon dioksida bisa dimanfaatkan bagi tumbuh-tumbuhan untuk melangsungkan fotosintesis untuk menghasilkan karbohidrat yang sangat berguna bagi makhluk hidup.